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Abstract 
The emergence of powerful new capabilities in areas such as 
artificial intelligence and machine learning (AI/ML) has cre-
ated an apparently inexhaustible source of demand for ever-
increasing “compute” (computational throughput), which 
will only increase further as AI-powered automation grows 
more efficient and ubiquitous, cost-effectively filling many 
economic needs and boosting the productivity of the entire 
economy. But this can only happen if computing technology 
itself becomes ever more energy-efficient, particularly given 
the environmental constraints limiting acceptable growth of 
aggregate deployed terrestrial power production capacity. 
However, low-level energy efficiency of conventional “non-
reversible” digital technologies can only improve by about an 
order of magnitude or so before reaching practical physical 
limits. Improvement by further orders of magnitude will thus 
require digital bit energies to increasingly be recovered and 
recycled for use in multiple operations, which necessitates 
migrating to the unconventional computing paradigm called 
reversible computing.  

In this position paper, we review the rationale for beginning 
intensive development of reversible computing technology, 
and the major challenges that will need to be addressed in its 
development, at all levels from devices through systems. 

1. Introduction 
The past few years have brought many impressive advances 
in the capabilities of compute-intensive systems, particularly 
those using artificial intelligence (AI) and machine learning 
(ML) techniques to effectively solve a wide variety of quite 
general types of problems with a level of competence that ri-
vals, or in some cases even exceeds, human-level abilities. 
Example areas of fast-emerging proficiency include language 
arts (Brown et al., 2020), visual arts (Ramesh et al., 2022), 
music composition (Liu et al., 2022), and visual scene inter-
pretation (Alayrac et al., 2022). In addition, AI-based ap-
proaches have greatly accelerated scientific discovery in ar-
eas ranging from molecular biology (Jumper et al., 2021) to 
cosmology (Li et al., 2021). 

Further, the cost-efficiency of various AI/ML-based solu-
tions is in many cases already competitive with that of human 

 
1 The pricing scale is at https://openai.com/api/pricing/; max 
query sizes at https://beta.openai.com/docs/engines/gpt-3.   
2 Using the aggregate maximum sustained performance of 
all systems on the TOP500 list (top500.org) as a proxy for 

workers; for example, placing a maximally-sized query to 
OpenAI’s largest GPT-3 natural language model costs1 from 
$0.12–0.24 (v1 vs. v2), processes ~2–4 pages of written text 
input, and returns a high-quality written result. Compare this 
to a human knowledge worker earning $50K per year, who 
incurs a comparable cost in just 15–30 seconds of work (ig-
noring overhead, benefits, and downtime).  

For this reason, it’s easy to see that AI/ML-powered automa-
tion solutions will certainly rapidly expand in adoption and 
become ubiquitous throughout many areas of the economy, 
changing the nature of work as many routine, white-collar 
tasks become far less expensive per unit of output; we can 
imagine that a typical human desk worker’s role will shift to-
wards managing the operation of AI-powered linguistic or ar-
tistic tools, thereby amplifying per-worker productivity and 
overall GDP growth. Automated solutions will come to per-
meate increasingly many sectors of the economy, as well as 
enabling the development of large new markets, such as var-
ious segments of decentralized finance (DeFi), and entire new 
categories of economic activity centered around virtual real-
ity “metaverses.” We can foresee a burgeoning “digital econ-
omy,” in which, over time, an increasing portion (and total 
amount) of civilization’s economic activity takes place in the 
digital realm and is powered by computing technology. 

As the digital economy grows more productive, demand for 
the continued expansion of its aggregate level of intensity (in 
terms of, e.g., computational operations carried out, globally, 
per unit time) will only increase. But, at the same time, the 
need for responsible stewardship of our planetary environ-
ment and natural resources demands that we not allow the in-
tensity of our energy production to increase nearly as much, 
or at nearly as high a rate, as our computing intensity.  

Put simply, if we want the aggregate global number of com-
putational operations per second to continue increasing at 𝑋% 
per year, but we can only tolerate deployed power production 
capacity increasing at 𝑌% per year, with 𝑋 > 𝑌, then this can 
only happen sustainably if computational energy efficiency 
continues increasing at an adequate rate.  As an example, if 
we would like for aggregate compute to continue to grow by 
68%/year (an historically typical2 rate), but deployed energy 
production capacity can only grow by 8%/year (which is the 

the growth rate of total global compute intensity, the in-
crease from 1.1 Tflop/s in June 1993 to 3.04 Eflop/s in Nov. 
2021 corresponds to an average compute growth rate of 
~68.4% per year over this period. 
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forecast for the near-term growth of renewables), then com-
putational energy efficiency will need to grow at a rate of 
about 56%/year.3 In the past, computational energy efficiency 
actually grew a bit faster than this (at ~60%/yr.) on average 
(Koomey et al., 2010), but more recently, low-level effi-
ciency growth slowed to about 30% per year (Koomey & 
Naffziger, 2016) and appears likely to slow further due to 
fast-approaching physical limits of conventional semicon-
ductor-based logic. 

Briefly, we can summarize the physical reasons for these lim-
its, which are quite fundamental. The efficient operation of 
complex switching circuits requires suppressing switch con-
ductance by a substantial factor (e.g., 109) between “on” and 
“off” states. Then Boltzmann statistics requires that suppress-
ing the probability of an event (e.g., an electron occupying a 
channel state) by a factor of 𝑟 requires an energy difference 
of at least 𝑘𝑇 ln 𝑟;4 for the example value, this is ~20 𝑘𝑇. 
Due to various nonidealities, this then translates to closer to 
~100 𝑘𝑇 for a minimum-sized transistor, ~1,000 𝑘𝑇 for a 
typical optimally sized transistor in high-performance logic, 
and ~10,000 𝑘𝑇 after accounting for various other overheads 
(fanout, wiring, multiple transistors per logic gate). These are 
conservative estimates. Altogether, that’s ~250 eV or 40 at-
tojoules (aJ) at room temperature, but today, logic signal en-
ergies are already only ~700 aJ (IRDS, 2021), which gives us 
only at most 7 more years of improvement (if we assume a 
50% per year rate) before we hit the physical limits.5 After 
we hit this wall, (at least) one of the following must occur: 

(1) The growth rate of aggregate compute intensity will 
have to slow, throttling back the growth rate of the dig-
ital economy, and of overall economic abundance; 

(2) The fraction of deployed power production capacity 
devoted to computing will have to increase, progres-
sively choking off other, more “analog” sectors of the 
economy from energy and growth, more and more so 
as computing’s share of the total rises; 

(3) The growth rate of total global deployed energy pro-
duction capacity will have to accelerate, thereby mak-
ing the attainment of environmental and resource sus-
tainability far more elusive; or, 

(4) Computing will be forced to shift to a new dominant 
paradigm, and more specifically, to one very different 
from today’s digital technology. 

It is our contention that (1)–(3) are all rather dramatically un-
desirable, and that therefore, (4) will be essential if we wish 

 
3 The calculation here is just 1.684/1.08 ≅ 1.56. 
4 Here, 𝑘 is Boltzmann’s constant of ~1.4 × 10ିଶ  J/K, and 
𝑇 is the ambient temperature. At a typical operating temper-
ature around 300 K, the thermal energy 𝑘𝑇 is 26 meV. 

to maintain sustainable growth of the digital (and overall) 
economy, and of the aggregate global level of abundance. 

Thus, we are in dire need of a new computing paradigm. Be-
low we discuss why reversible computing is, indeed, the only 
new paradigm for digital computing that might potentially be 
long-term sustainable. 

2. The Need for Reversible Computing 
Above we discussed why, in practice, at least ~10,000 kT en-
ergy per logic signal is needed in field-effect transistor tech-
nology, even at the very end of the development roadmap for 
such devices. Moreover, this practical limit arises from fun-
damental thermodynamic and quantum-mechanical princi-
ples and cannot be trivially circumvented. Any technology 
that aims to replace today’s CMOS (complementary metal-
oxide-semiconductor) technology, for purposes of general 
digital computing, will need to solve the same problems, in-
cluding how to build the equivalent of a digital logic gate, and 
how to interconnect gates together, while still accounting for 
the various nonidealities and overheads that may arise. Thus, 
any viable computing technology will still have a minimum 
digital signal energy, likely framed as a significant multiple 
of the thermal energy kT, that will be required for effective 
operation within complex computing hardware. 

Further, we know from fundamental principles of statistical 
physics and information theory (Frank, 2018) that in no phys-
ically possible technology can the amount of available energy 
associated with a bit’s worth of digital information, which is 
lost when the physical system encoding that bit is allowed to 
thermalize, ever be less than the Landauer limit of 𝑘𝑇 ln 2 (or 
~18 meV at room temperature). This follows directly from 
the modern understanding that physical entropy is just un-
known physical information; this understanding arose out of 
the early work by Boltzmann, Planck, and other pioneers. 

As a result of this fundamental principle, the only long-term 
sustainable paradigm for digital computing is the reversible 
computing paradigm in which loss of digital bits, and their 
associated energy, is avoided. This idea was first shown to be 
theoretically coherent by Bennett (1973), and since then, re-
search on the concept has proceeded, albeit at a modest pace. 
As a result, today we understand quite well how reversible 
computing can be implemented using various technologies, 
including the field-effect transistors used in CMOS (Frank et 
al., 2020b), though much work remains to further develop re-
versible tech towards large-scale practicality. 

5 The IRDS itself is actually more conservative than this, 
targeting only a ~2× reduction in signal energy (from 650 aJ 
to 330 aJ) from 2022 to 2034, which is only about a 5.8% 
efficiency boost per year—not even close to what’s needed. 
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Note that here, we are not referring to reversible computing 
in the way that it’s used in quantum computing, to help enable 
fast quantum algorithms for certain problems, but without 
concern for energy dissipation in more general computing 
workloads. Rather, here we are speaking of the use of reversi-
ble computing in a more classical (i.e., non-quantum) mode, 
to make all digital computing far more energy efficient. 

One widespread misconception about reversible computing 
is that it saves only the last 𝑘𝑇 ln 2 of energy, and thus isn’t 
useful when signal energies are much larger than this – but 
that isn’t the case! When reversible computing principles are 
properly applied, one can save the vast majority of the entire 
signal energy, and approaching all of it, as the technology is 
further refined. How does this work? Simply put, it leverages 
a combination of two basic physical principles: 

(1) Use of nearly adiabatic operation of individual digital 
elements, that is, transforming between distinct digital 
states at a speed that is slow compared to the rate at 
which the system naturally settles down to a stable 
state, but fast compared to the rate at which the ele-
ment dissipates its energy to the thermal environment. 
In the case of CMOS, this means switching at a rate 
that is slow compared to the 𝑅𝐶 switching time con-
stant of a given logic gate, but fast compared to the 
gate’s leakage time constant. This is not difficult, as a 
typical leading-edge CMOS technology today has a 
switching time constant around 1 ps, and a leakage 
time constant of at least 1 ms (this difference corre-
sponding to the 𝑟 = 10ଽ on/off conductance ratio 
mentioned earlier). At speeds in between these, the en-
ergy loss from switching can be reduced (Frank & 
Shukla 2021) by a factor of up to ~√𝑟, which in this 
example is ~30,000 ×. Due to the increased energy 
efficiency, the relatively slow speed of individual de-
vice operations can be overcome by operating much 
larger numbers of devices in parallel, so long as per-
device manufacturing cost continues to decrease. 

(2) Use of nearly ballistic evolution of resonant energy-
recovering driving systems. For a rough mental picture 
of what this would mean in the mechanical domain, 
think of a vibrating tuning fork, or a spinning flywheel. 
Resonant all-electrical circuits can be built as well 
(Frank et al., 2020). The efficiency of such periodical-
ly evolving systems can be characterized in terms of 
their quality factor, 𝑄, which is roughly the number of 
cycles they can “coast” along, unpowered, before los-
ing the lion’s share (1 − eିଵ = ~63%) of their en-
ergy; or equivalently, ~1/𝑄 is the fraction of energy 
lost per cycle. The attainable 𝑄 value also limits the 
system’s energy efficiency. 

Thus, fundamentally, highly energy-efficient computation in 
an adiabatic switching circuit, driven by a ballistic dynamical 
evolution encompassing it, “only” requires refining the tech-
nology so as to increase 𝑄 and √𝑟 to commensurately high 
levels. This is by no means a trivial task in general, but it of-
fers a sustainable path by which we can proceed forwards. 
That is, no fundamental limits are known on these quantities. 

What is the connection between adiabatic switching and the 
reversible computing concepts mentioned earlier?  It is sim-
ply that a fully adiabatic transformation of a physical system 
is necessarily also reversible – if you perform the same trans-
formation in reverse, you’ll get back to where you started. In 
particular, you can’t merge together two possible physical 
states sitting at very different energies without irreversibly 
losing a substantial fraction of the energy of the higher-en-
ergy state. Thus, a non-reversible digital transformation can’t 
be adiabatic, or even approach full adiabaticity. Again, the 
reasons for this go back to Landauer’s principle, and the deep 
connection between entropy and information in physics. 

Thus, we contend that, if the world wants to get very far be-
yond the practical limits of non-reversible CMOS technol-
ogy, this is absolutely going to require diligently applying the 
principles of reversible computing and adiabatic/ballistic sys-
tems mentioned above. We further expect that systems based 
on these principles can begin to become competitive within a 
5–10-year timeframe if there is aggressive investment to sup-
port their development between now and then. 

2. Engineering Challenges 
What is required for reversible computing to move forward 
and be ready to carry on the torch of ever-increasing compu-
ting efficiency once the progress of the roadmap for conven-
tional non-reversible CMOS reaches its endpoint? The im-
portant challenges span multiple levels of the computing 
technology stack, from basic physics through systems. 

(1) Fundamental physics.  In anticipation of the long-
term need for further improvement of minimum en-
ergy dissipation, energy-delay product, and other im-
portant figures of merit, the fundamental quantum 
thermodynamic limits of reversible computing need to 
be intensively studied (Frank & Shukla, 2021). 

(2) Fabrication process development.  In near-term 
technologies such as reversible CMOS, manufacturing 
processes need to be optimized with adiabatic opera-
tion in mind. In particular, the peak energy efficiency 
of reversible CMOS is influenced more strongly by the 
on-off ratio 𝑟 than is conventional non-reversible 
CMOS. Thus, device selections with larger 𝑟 values 
than is typical need to be developed (Frank et al., 
2020). Also, due to the improved energy efficiency, 
the number of layers of active logic can and should be 
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further increased, and cost per layer reduced, com-
pared to what’s justifiable for non-reversible technol-
ogies. 

(3) Device characterization and modeling.  For applica-
tions at ultra-low temperatures, e.g., for control of 
qubits in quantum computer engineering (Frank & 
DeBenedictis 2018), the behavior of (preferably high-
𝑟) CMOS devices in adiabatic circuits at very low tem-
peratures needs to be studied and characterized. Well-
validated device models are needed that remain accu-
rate at low temperatures. 

(4) Cell library development. Well-optimized adiabatic 
CMOS logic cell libraries are needed, across a range 
of competitive fabrication processes, to support design 
development. 

(5) EDA tool support.  Electronic design automation 
(EDA) tool suites need to be extended to support the 
unique architectural needs and design constraints of 
the adiabatic/reversible approach throughout the entire 
design flow. This will require appropriate extensions 
to hardware description languages (HDLs), as well as 
support from tools for design synthesis and verifica-
tion. 

(6) Reversible algorithms. Much more study is needed 
on the design of well-optimized algorithms (both hard-
ware algorithms for use in logic designs and IP blocks, 
and also software algorithms for reversible processing 
architectures) which embody well-analyzed tradeoffs 
between time, space, and energy resources in an adia-
batic/reversible context (Demaine et al., 2016). 

(7) IP blocks and architectural components.  Design 
components need to be developed to support a wide 
range of digital applications, including development of 
ASICs, configurable ICs such as FPGAs, and various 
processor types including MCUs, DSPs, CPUs, GPUs, 
and especially in the fast-growing market segment of 
specialized AI accelerator chips. 

(8) RF design, advanced packaging, and heterogene-
ous integration.  Design of high-quality resonant ele-
ments, and their integration and/or packaging together 
with adiabatic ICs, presents a formidable engineering 
challenge which will need to be tackled in order for 
room-temperature applications to be highly competi-
tive in terms of system-level energy-efficiency, alt-
hough some benefit might still be gained even at lower 
𝑄 values via offloading thermal burdens from the IC, 
which can enable higher 3D packing densities and re-
duce parasitic loading on interconnects. 

(9) Globally asynchronous system design. As the size of 
a digital system increases, it becomes more difficult to 

maintain globally synchronous operation, and the en-
ergy costs implied by synchronizing communication 
between different asynchronous domains could even-
tually limit the long-term scale-up of the benefits that 
can be attained through reversible operation (Earley, 
2021). However, the issues here are not yet clear and 
require further, more detailed study.  

(10) Application and systems software.  As we pursue the 
reversible computing development path, and the de-
gree of reversibility of hardware gradually increases, 
eventually we’ll even require system and application 
software to become “reversibility-aware.” Instruction 
set architectures and programming languages with ex-
plicit support for reversibility in the language will 
eventually be needed (Frank, 1999). 

3. Conclusion 
Due to the significant environmental impacts of increased en-
ergy production, achieving long-term sustainable growth of 
the terrestrial economy will soon require the trillion-dollar 
computing hardware industry to shift its focus from tradition-
al, non-reversible digital computing towards the unconven-
tional reversible computing paradigm. Far from breaking any 
laws of physics, reversible computing simply leverages our 
existing well-developed understanding of adiabatic and bal-
listic physical processes and applies it carefully in the design 
of novel mechanisms and structures for digital computing. 
There is nothing preventing this technology from being rap-
idly brought from concept to practical reality in time to keep 
the growth of the digital economy from stalling; it will only 
take aggressive investment. 

In essence, the difference between aggressively pursuing re-
versible computing technology, versus not doing so, is the 
difference between enabling our local civilization’s level of 
abundance to continue increasing to arbitrarily high levels, 
versus consigning it to eventual technological stagnation and 
catastrophic resource overshoot, risking civilizational col-
lapse. Thus, in our view, there can be no greater or clearer 
motivation to immediately begin a major new push to over-
haul the very foundations of computing and rejuvenate the 
flourishing of the digital economy with a fresh new vision. 
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